
Polyspace® Code Prover™

Getting Started Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Code Prover™ Getting Started Guide
© COPYRIGHT 2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2013 Online only Revised for Version 9.0 (Release 2013b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction to Polyspace Code Prover

1
Polyspace Code Prover Product Description 1-2
Key Features . 1-2

Set Up a Polyspace Project

2
Set Up Polyspace Project . 2-2
Tutorial Overview . 2-2
What Is a Project? . 2-2
Prepare Project Folders . 2-3
Open Polyspace Code Prover . 2-4
Create a New Project to Verify the Example C File 2-6

Server Configuration for Remote Verification
and Polyspace Metrics

3
Set Up Remote Verification and Polyspace Metrics . . . 3-2
Requirements for Remote Verification and Polyspace
Metrics . 3-3

Configure Server for Remote Verification and Polyspace
Metrics . 3-4

Configure Web Server for HTTPS . 3-8
Change Web Server Port Number for Polyspace Metrics
Server . 3-9

iii

Run a Verification

4
Run Verification . 4-2
Tutorial Overview . 4-2
Before You Start the Tutorial . 4-3
Prepare for Verification . 4-3
Start Remote Verification from Project Manager 4-8
Start Local Verification from Project Manager 4-9
Monitor Verification Progress . 4-10
Stop Verification . 4-11

Review Verification Results

5
Review Verification Results . 5-2
Tutorial Overview . 5-2
Before You Start . 5-2
Open Remote Verification Results . 5-3
Open Local Verification Results . 5-4
Explore Results Manager perspective 5-5
Review Results . 5-9
Automatically Test Unproven Code 5-21
Generate Reports of Verification Results 5-22

Check Compliance with Coding Rules

6
Check Compliance with Coding Rules 6-2
Tutorial Overview . 6-2
Before You Start . 6-3
Create New Module for Coding Rules Checking 6-3
Set MISRA C Checking Option . 6-7
Select Coding Rules to Check . 6-8
Exclude Files from MISRA C Checking 6-11
Run a Verification with Coding Rules Checking 6-12

iv Contents

Examine MISRA C Violations . 6-12

Verifying Code Generated from Simulink
Models

7
Verification of Code Generated from Simulink
Models . 7-2

Verify Code from a Simple Simulink Model 7-3
Create Simulink Model and Generate Code 7-3
Run Polyspace Verification . 7-6
View Results in Polyspace Code Prover 7-6
Trace Error to Simulink Model . 7-8
Specify Signal Ranges . 7-9
Verify Updated Model . 7-11

Code Verification in IBM Rational Rhapsody
Environment

8
Verify Code in IBMRational Rhapsody Environment . . 8-2
Code Verification Approach . 8-2
Adding Polyspace Profile to Model . 8-3
Accessing Polyspace Features . 8-3
Configuring Verification Options . 8-6
Running a Verification . 8-7
Monitoring a Verification . 8-8
Viewing Polyspace Results . 8-8
Locating Faulty Code in Rhapsody Model 8-9
Template Configuration Files . 8-9

v

Index

vi Contents

1

Introduction to Polyspace
Code Prover

1 Introduction to Polyspace® Code Prover™

Polyspace Code Prover Product Description
Prove the absence of run-time errors in software

Polyspace® Code Prover™ proves the absence of overflow, divide-by-zero,
out-of-bounds array access, and certain other run-time errors in C and C++
source code. It produces results without requiring program execution, code
instrumentation, or test cases. Polyspace Code Prover uses static analysis
and abstract interpretation based on formal methods. You can use it on
handwritten code, generated code, or a combination of the two. Each operation
is color-coded to indicate whether it is free of run-time errors, proven to fail,
unreachable, or unproven.

Polyspace Code Prover also displays range information for variables and
function return values, and can prove conditions under which variables exceed
specified range limits. Results can be published to a dashboard to track
quality metrics and ensure conformance with software quality objectives.
Polyspace Code Prover can be integrated into build systems for automated
verification.

Support for industry standards is available through IEC Certification Kit (for
IEC 61508 and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features

• Proven absence of certain run-time errors in C and C++ code

• Color-coding of run-time errors directly in code

• Calculation of range information for variables and function return values

• Identification of conditions under which variables exceed specified range
limits

• Quality metrics for tracking conformance with software quality objectives

• Web-based dashboard providing code metrics and quality status

• Guided review-checking process for classifying results and run-time error
status

• Graphical display of variable reads and writes

1-2

2

Set Up a Polyspace Project

2 Set Up a Polyspace® Project

Set Up Polyspace Project

In this section...

“Tutorial Overview” on page 2-2

“What Is a Project?” on page 2-2

“Prepare Project Folders” on page 2-3

“Open Polyspace® Code Prover™” on page 2-4

“Create a New Project to Verify the Example C File” on page 2-6

Tutorial Overview
Before you can run a verification of your source code, you must have a project.
In this tutorial, you create the project that you use to run verifications in
later tutorials.

What Is a Project?
Polyspace Code Prover project is a set of parameters that specify the
verification of your software project source files. A project includes:

• Source files.

• Include folders.

• One or more modules. Each module has the following folders:

- Source— Specific versions of source files used in the verification

- Configuration — One or more configurations. Each configuration
specifies a set of verification options.

- Result — Verification results.

Through the Project Manager perspective, you can create your own project,
use an existing project, or modify a project.

In this tutorial, you create a new project and save the project (.psprj) file.

2-2

Set Up Polyspace® Project

Prepare Project Folders
Before you verify a C source file with Polyspace Code Prover software, you
must know the locations of the C source file and the include files. You must
also know where you want to store the verification results.

For each project, decide where to store source files and results. For example,
you can create a project folder, and then in that folder, create separate folders
for the source files, include files, and results.

For this tutorial, prepare a project folder as follows:

1 Create a project folder named polyspace_project.

2 Open polyspace_project, and create the following folders:

• sources

• includes

3 Copy the file example.c and single_file_analysis.c from

MATLAB_Install\polyspace\examples\cxx\Demo_C_Single-File\sources

to

polyspace_project\sources

MATLAB_Install is the MATLAB® installation folder, for example,
C:\Program Files\MATLAB\R2013b.

4 Copy the files include.h, math.h, single_file_analysis.h and
single_file_private.h from

MATLAB_Install\polyspace\examples\cxx\Demo_C_Single-File\sources

to

polyspace_project\includes.

2-3

2 Set Up a Polyspace® Project

Open Polyspace Code Prover
In Windows®, do one of the following:

• From the folder MATLAB_Install\polyspace\bin, double-click the
Polyspace Code Prover icon.

• Double-click a desktop Polyspace Code Prover shortcut. To create a
shortcut, in the folder MATLAB_Install\polyspace\bin, right-click
polyspace-code-prover. Then, from the context menu, select Create
shortcut.

• In a DOS command window, enter:

MATLAB_Install\polyspace\bin\polyspace-code-prover

MATLAB_Install is your MATLAB installation folder, for example:

C:\Program Files\MATLAB\R2013b

• From the MATLAB apps gallery, click the Polyspace Code Prover app.

In Linux®, do one of the following:

• Run the following command:

/MATLAB_Install/polyspace/bin/polyspace-code-prover

• From the MATLAB apps gallery, click the Polyspace Code Prover app.

Note If MATLAB is not open, you can open MATLAB from Polyspace Code

Prover. On the toolbar, click the icon .

By default, the Polyspace Code Prover displays the Project Manager
perspective. The Project Manager perspective has three main display sections.

2-4

Set Up Polyspace® Project

Display
section

For

Project Browser Specifying:
• Source files

• Include folders

• Results folder

Configuration Specifying verification options

Output Monitoring the progress of a verification, viewing status,
log messages, and general verification statistics.

2-5

2 Set Up a Polyspace® Project

You can resize or hide any of these sections. You learn more about the Project
Manager perspective later in this tutorial.

Create a New Project to Verify the Example C File
To run a verification, you must have a project, saved with file type psprj, . In
this part of the tutorial, you create a new project for verifying example.c and
single_file_analysis.c.

To create a new project, you:

• “Open a New Project” on page 2-6

• “Specify Source Files and Include Folders” on page 2-8

• “Specify Target Environment” on page 2-9

• “Specify Analysis Options” on page 2-10

• “Save the Project” on page 2-10

Open a New Project
To open a new project for verifying example.c and single_file_analysis.c:

1 Select File > New Project. The Polyspace Project – Properties dialog
box opens.

2 In the Project name field, enter example_project.

3 Clear the Use default location check box. In this tutorial, you change the
location to the project folder that you created in “Prepare Project Folders”
on page 2-3.

Note You can update the default project location. Select
Options > Preferences, which opens the Polyspace Preferences dialog
box. On the Project and Results Folder tab, in the Default project
location field, specify the new default location.

2-6

Set Up Polyspace® Project

4 In the Location field, enter or navigate to the project folder that you
created earlier, that is, C:\Polyspace\polyspace_project.

5 In the Project language section, click C.

6 Click Finish.

2-7

2 Set Up a Polyspace® Project

Specify Source Files and Include Folders
To specify the source files and include folders for the verification of example.c
and single_file_analysis.c:

1 In the Project Browser, select the Source folder.

2 On the Project Browser toolbar, click the Add source icon . The
Project – Add Source Files and Include Folders dialog box opens.

3 The project folder polyspace_project must be visible in the Look in field.
Otherwise, navigate to this folder.

4 Select the sources folder. Then click Add Source Files.

The software adds example.c and single_file_analysis.c to the Source
folder of example_project.

5 Select the includes folder. Then click Add Include Folders.

The software adds includes to the Include folder of example_project.

Note In addition to the include folders that you specify, Polyspace Code
Prover automatically adds the standard includes to your project.

6 Click Finish to apply the changes and close the dialog box.

2-8

Set Up Polyspace® Project

Specify Target Environment
Many applications are designed to run on specific target CPUs and operating
systems. Since some run-time errors are dependent on the target, before
running you must specify the type of CPU and operating system used in the
target environment.

In the Project Manager perspective, the Configuration > Target &
Compiler pane allows you to specify the target operating system and
processor type for your application.

To specify the target environment for this tutorial:

1 Select the Configuration > Target & Compiler pane.

2 From the Target operating system drop-down list,
selectno_predefined_OS.

3 From the Target processor type drop-down list, select i386.

For more information about emulating your target environment, see “Set
Up a Target”.

2-9

2 Set Up a Polyspace® Project

Specify Analysis Options
In the Project Manager perspective, the Configuration pane allows you to
specify analysis options that the software uses during verification. For this
tutorial, use the default values for all options.

For more information, see “Analysis Options for C Code” or “Analysis Options
for C++ Code”.

Save the Project
To save the project, select File > Save or enter Ctrl+S.

The software saves your project using the Project name and Location that
you specified when creating the project.

2-10

3

Server Configuration for
Remote Verification and
Polyspace Metrics

3 Server Configuration for Remote Verification and Polyspace® Metrics

Set Up Remote Verification and Polyspace Metrics

In this section...

“Requirements for Remote Verification and Polyspace Metrics” on page 3-3

“Configure Server for Remote Verification and Polyspace Metrics” on page
3-4

“Configure Web Server for HTTPS” on page 3-8

“Change Web Server Port Number for Polyspace Metrics Server” on page 3-9

With Polyspace Code Prover, you can run the following types of verifications.

Verification
type

Run when

Remote Source files are large (more than 800 lines of code
including comments), and execution time of verification
is long.

Local Source files are small, and execution time of verification
is short.

You require Polyspace Metrics to:

• Manage remote verifications, for example, to monitor progress, stop a
verification, or view results.

• Evaluate and monitor software quality metrics.

To set up a configuration for remote verification and Polyspace Metrics, see:

• “Requirements for Remote Verification and Polyspace Metrics” on page 3-3

• “Configure Server for Remote Verification and Polyspace Metrics” on page
3-4

• “Configure Web Server for HTTPS” on page 3-8

• “Change Web Server Port Number for Polyspace Metrics Server” on page
3-9

3-2

Set Up Remote Verification and Polyspace® Metrics

Requirements for Remote Verification and Polyspace
Metrics
The following table lists the requirements for remote verification and
Polyspace Metrics.

Task Location Requirements

Project
configuration
and verification
submission

Client
node

• MATLAB

• Polyspace Bug Finder™ or Polyspace Code
Prover

• Parallel Computing Toolbox™

Remote
verification

Head
node of
MDCS
cluster

• MATLAB

• Polyspace Code Prover

• MATLAB Distributed Computing Server™

Polyspace
Metrics service

Head
node of
MDCS
cluster
or any
network
server

• MATLAB

• Polyspace Bug Finder or Polyspace Code
Prover

Downloading
of complete
verification
results from
Polyspace
Metrics

Client
node
or any
network
computer

• MATLAB

• Polyspace Bug Finder or Polyspace Code
Prover

• Access to Polyspace Metrics server

Viewing of
verification
results summary
from Polyspace
Metrics

Any
network
computer

Access to Polyspace Metrics server.

For configuration details, see “Configure Server for Remote Verification and
Polyspace Metrics” on page 3-4.

3-3

3 Server Configuration for Remote Verification and Polyspace® Metrics

For information about setting up a computer cluster, see “Install Products
and Choose Cluster Configuration”.

Configure Server for Remote Verification and
Polyspace Metrics
The following figure shows a network that consists of a MATLAB Distributed
Computing Server cluster and a Parallel Computing Toolbox client. In
addition, Polyspace Code Prover and Polyspace Bug Finder are installed on
the head node and client node respectively.

3-4

Set Up Remote Verification and Polyspace® Metrics

To set up remote verification and Polyspace Metrics, configure the head node
through the Metrics and Remote Server Settings dialog box and the client
node through the Server Configuration tab:

Metrics and Remote Server Settings

1 Select Options > Metrics and Remote Server Settings.

2 Under Polyspace Metrics Settings, specify:

• User name used to start the service— Your user name.

• Password — Your password.

• Communication port — Polyspace communication port number
(default 12427). This number must be the same as the communication
port number specified on the Polyspace Preferences > Server
Configuration tab

• Folder where analysis data will be stored— Results repository for
Polyspace Metrics.

3 Under Polyspace MDCS Cluster Security Settings, you see the
following options with default values:

• Start the Polyspace MDCE service — Selected. The mdce service,
which is required to manage the MJS, will run on the MJS host computer.

• MDCE service port — 27350.

• Use secure communication – Not selected. Communication is not
encrypted. For encrypted communication, select this check box.

For information about MATLAB Distributed Computing Server cluster
security, see “Cluster Security”.

4 To start the Polyspace Metrics and mdce services, click Start Daemon.

Use the Metrics and Remote Server Settings dialog box to start and stop mdce
services only if you configure the MDCS head node as the Polyspace Metrics
server. Otherwise, clear the Start the Polyspace MDCE service check box,
and use the MDCS Admin Center. To open the MDCS Admin Center, run:

MATLAB_Install/toolbox/distcomp/bin/admincenter

3-5

3 Server Configuration for Remote Verification and Polyspace® Metrics

For information about the MDCS Admin Center, see “Cluster Processes and
Profiles”.

The software stores the information that you specify through the Metrics and
Remote Server Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf

• On a Linux system, /etc/Polyspace/polyspace.conf

Server Configuration

1 Select Options > Preferences.

2 Click the Polyspace Preferences > Server Configuration tab.

3 Under MDCS cluster configuration, in the Job scheduler host name
field, specify the computer for the head node of the cluster. This computer
hosts the MATLAB job scheduler (MJS).

You can configure the MJS host through the MATLAB Distributed
Computing Server Admin Center. See “Configure for an MJS”.

4 Under Metrics configuration:

• If you want the software to detect a server on the network that uses port
12427, click Automatically detect the Polyspace Metrics Server.

Otherwise, to specify the host computer for your Polyspace Metrics
server, click Use the following server and port. Enter an IP address
(or server name) and the Polyspace communication port number (default
12427). You must specify the same port number for all clients that use
the Polyspace Metrics service.

• By default, the software selects the Download results automatically
check box.

In the Folder field, specify a local folder for downloading result files
from Polyspace Metrics.

In Polyspace Metrics, when you click an item to view it within Polyspace
Code Prover, the software downloads results to the verification launch
folder. However, if this folder does not exist, the software downloads
results to the folder specified in the Folder field. The default is C:\Temp.

3-6

Set Up Remote Verification and Polyspace® Metrics

If you clear the Download results automatically check box, when you
click an item in Polyspace Metrics, a dialog box opens. In this dialog box,
you can specify your locally accessible folder. When you exit Polyspace
Code Prover, the folder and its contents are not deleted.

• In the Port number field, specify the port number for communication
between Polyspace Code Prover and the Polyspace Metrics Web
interface. The default is 12428.

• In the Web server port number field, specify the port number for the
Web server. For HTTP, the default is 8080.

If you use HTTPS for your Web protocol, select Use secure HTTPS
protocol instead of HTTP protocol to access Metrics results.
Specify your port number in the corresponding field. For HTTPS, the
default is 8443.

There are additional steps to set up the Web server for HTTPS. See
“Configure Web Server for HTTPS” on page 3-8.

If you change the port number from the default, you must configure the
same port number for the Polyspace Metrics server. See “Change Web
Server Port Number for Polyspace Metrics Server” on page 3-9 .

To view Polyspace Metrics, in the address bar of your Web browser, enter
the following URL:

protocol://ServerName:WSPN

• protocol is either http or https.

• ServerName is the name or IP address of your Polyspace Metrics server.

• WSPN is the Web server port number.

Note To access Polyspace Metrics when the Polyspace Metrics server and
MJS are not hosted by the same computer, you must add the following line
to the polyspace.conf file :

job_scheduler=Release:HeadNodeHostName:JobSchedulerName

3-7

3 Server Configuration for Remote Verification and Polyspace® Metrics

For information about required products, see “Requirements for Remote
Verification and Polyspace Metrics” on page 3-3.

Configure Web Server for HTTPS
By default, the data transfer between Polyspace Code Prover and the
Polyspace Metrics Web interface is not encrypted. You can enable HTTPS for
the Web protocol, which encrypts the data transfer. To set up HTTPS, you
must change the server configuration and set up a keystore for the HTTPS
certificate.

Before you start the following procedure, you must complete “Configure
Server for Remote Verification and Polyspace Metrics” on page 3-4.

To configure HTTPS access to Polyspace Metrics:

1 Open the Metrics and Remote Server Settings dialog box. Run the following
command:

Polyspace_Install\polyspace\bin\polyspace-rl-manager.exe

2 Click Stop Daemon. The software stops the mdce and Polyspace Metrics
services. Now, you can make the changes required for HTTPS.

3 Open the Polyspace_RLDatas\tomcat\conf\server.xml file in a text
editor. Look for the following text:

<!-
<Connector port="8443" SSLEnabled="true" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

->

If the text is not in your server.xml file:

a Delete the entire ..\conf\ folder.

b In the Metrics and Remote Server Settings dialog box, restart the
daemon by clicking Start Daemon.

c Click Stop Daemon to stop the services again so that you can finish
setting up the server for HTTPS.

3-8

Set Up Remote Verification and Polyspace® Metrics

The conf folder is regenerated, including the server.xml file. The file now
contains the necessary text to configure the HTTPS Web server.

4 Follow the commented-out instructions in server.xml to create a keystore
for the HTTPS certificate.

5 In the Metrics and Remote Server Settings dialog box, to restart the
Polyspace Metrics service with the changes, click Start Daemon.

To view Polyspace Metrics, in the address bar of your Web browser, enter
the following URL:

https://ServerName:WSPN

• ServerName is the name or IP address of the Polyspace Metrics server.

• WSPN is the Web server port number.

Change Web Server Port Number for Polyspace
Metrics Server
If you change or specify a non-default value for the Web server port number of
your Polyspace Code Prover client, you must manually configure the same
value for your Polyspace Metrics server.

In Polyspace_RLDatas\tomcat\conf\server.xml, edit the port attribute of
the Connector element for your Web server protocol.

• For HTTP:

<Connector port="8080"/>

• For HTTPS:

<Connector port="8443" SSLEnabled="true" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

3-9

3 Server Configuration for Remote Verification and Polyspace® Metrics

3-10

4

Run a Verification

4 Run a Verification

Run Verification

In this section...

“Tutorial Overview” on page 4-2

“Before You Start the Tutorial” on page 4-3

“Prepare for Verification” on page 4-3

“Start Remote Verification from Project Manager” on page 4-8

“Start Local Verification from Project Manager” on page 4-9

“Monitor Verification Progress” on page 4-10

“Stop Verification” on page 4-11

Tutorial Overview
After creating the project example_project.psprj, which is described in “Set
Up Polyspace Project” on page 2-2, you can run a local or remote verification.

Verification
type

Use when

Remote Source files are large (more than 800 lines of code
including comments), and execution time of verification
is long.

You want to generate Polyspace Metrics. Through
Polyspace Metrics, you can manage verifications and
monitor quality over a project lifecycle.

Local Source files are small, and execution time of verification
is short.

In this tutorial, you learn how to start local and remote verifications
using the Project Manager. You also verify the file example.c and
single_file_analysis.c.

The local and remote verifications generate the same results for your project.
In the tutorial “Review Verification Results” on page 5-2, you review these
results.

4-2

Run Verification

Before You Start the Tutorial
Before you start this tutorial, you must:

• “Set Up Remote Verification and Polyspace Metrics” on page 3-2

• Complete “Set Up Polyspace Project” on page 2-2 as the folders and project
file (example_project.psprj) from that tutorial are required.

Prepare for Verification

Open the Project
To run a verification, you must have an open project file. For this tutorial, use
the project file example_project.psprj that you created in “Set Up Polyspace
Project” on page 2-2. If example_project.psprj is not already open, then:

1 Select File > Open Project.

2 In the Open Project dialog box, from the Look in drop-down list, navigate
to polyspace_project.

3 Select example_project.psprj.

4 Click Open.

4-3

4 Run a Verification

Specify Source Files to Verify
Each Polyspace Code Prover project can contain multiple modules. With
each module, you verify a specific set of source files using a specific set of
analysis options.

Before you start a verification, you must specify the files that you want to
verify by copying them into a module. In this tutorial, example_project[C]
has two files that require verification. To verify the files separately, copy the
files into individual modules:

1 In the Project Browser, right-click example.c.

2 From the context menu, select Copy Source File to > Module_1.

3 In the Project Browser, right-click example_project[C].

4 Select Create New Module.

5 Right-click single_file_analysis.c.

6 Select Copy Source File to > Module_2.

4-4

Run Verification

Check for Compilation Problems
During a verification, if the Compilation Assistant detects compilation errors,
the verification stops. The software displays errors and possible solutions on
the Output Summary tab.

Note The Compilation Assistant does not support the verification option
-unit-by-unit. For more information, see, “Check for Compilation
Problems”.

To check your project for compilation problems:

1 Select Options > Preferences.

4-5

4 Run a Verification

2 In the Polyspace Preferences dialog box, click the Project and Results
Folder tab.

3 Select the Use Compilation Assistant check box. Then click OK.

4 From the Project Manager perspective, in the
Configuration > Distributed Computing pane, clear the Batch check
box.

5 In the Project Browser, right-click the Include folder
(C:\Polyspace\polyspace_project\includes), and then select
Remove. The missing include files will cause compilation problems.

6 Select Module_1.

7 On the Project Manager toolbar, click .

The software compiles your code and checks for errors. It reports the
results on the Output Summary tab.

In this case, the software generates only warnings (in orange), not errors,
for the missing include files. Because there are no errors, the verification is
still completed. It is a good practice to resolve warnings for missing include
files first, because they might be the root cause of other warnings or errors.

8 In the Project Browser, select Module_2.

4-6

Run Verification

9 Click the button again. The verification software runs with
single_file_analysis.c as the source file.

Again, the software compiles your code and checks for errors. It reports the
results on the Output Summary tab.

In this case, the software generates:

• Warnings for the missing include files.

• Errors for undefined identifiers, which stop the verification. The
Suggestion/Remark column indicates that definitions for data types
are required. This information is present in the include files that were
removed.

10 In the Project Browser tree, right-click the Include folder. From the
context menu, select Add Source.

The Project - Add Source Files and Include Folders dialog box opens.

11 If you are not in the polyspace_project folder, navigate to this folder.

12 Select the includes folder. Then click Add Include Folders.

The software adds the includes folder to the Include folder for
example_project.

13 Click Finish.

4-7

4 Run a Verification

14 In the Project Browser, select Module_1. On the Project Manager toolbar,

click .

The verification should start and run to completion without any include
file warnings.

15 In the Project Browser, select Module_2. On the Project Manager toolbar,

click .

The verification should start and run to completion without any warnings
or errors.

Start Remote Verification from Project Manager

1 In the Project Manager perspective, from the Project Browser pane,
select the module you want to verify.

2 Select the Configuration > Distributed Computing pane.

3 Select the Batch check box. By default, the software also selects the
Add results to repository check box, which enables the generation of
Polyspace Metrics.

4 On the Project Manager toolbar, click .

On the local host computer, the Polyspace Code Prover software performs
code compilation . Then the Parallel Computing Toolbox software submits
the verification to the MATLAB job scheduler (MJS) on the head node of
the MATLAB Distributed Computing Server cluster. For more information,
see “Phases of Verification”.

Note If you see the message Verification process failed, click OK and
go to “Verification Process Failed Errors”.

To monitor progress, use Polyspace Metrics. See “Monitor Verification
Progress” on page 4-10.

4-8

Run Verification

Start Local Verification from Project Manager
To start a verification on your local computer:

1 In the Project Manager perspective, from the Project Browser view,
select the module you want to verify.

2 Select the Configuration > Distributed Computing pane.

3 By default, the Batch check box is not selected. However, if this check box
is selected, you must clear the check box.

4 On the Project Manager toolbar, click .

You can monitor the progress of the verification through the Progress
Monitor, Full Log, and Output Summary tabs. See “Monitor Verification
Progress” on page 4-10.

If the verification fails, go to “Verification Process Failed Errors”.

When the verification is complete, you see:

• In the Full Log, the message End of Polyspace verification.

• In the Project Browser, the results file, for example,
example_project.pscp.

4-9

4 Run a Verification

In the tutorial “Review Verification Results” on page 5-2, you open the Results
Manager perspective and review the verification results.

Monitor Verification Progress
To monitor the progress of a remote verification, open the verification log:

1 Open the Runs view of Polyspace Metrics.

2 Right-click the verification.

3 From the context menu, select View Log.

For more information, see “Manage Previous Verifications With Polyspace
Metrics”.

To monitor the progress of a local or remote interactive verification, from the
Project Manager perspective, use the following tabs :

4-10

Run Verification

• Progress Monitor — A blue progress bar indicates the current phase of
the verification. The tab also displays the time and percentage completed
for each phase.

• Full Log— This tab displays messages, errors, and statistics for all phases
of the verification. To search for a term, in the Search field, enter the
required term. Click the up arrow or down arrow to move sequentially
through occurrences of this term.

• Output Summary — Displays compile phase messages and errors. To
search for a term, in the Search field, enter the required term. Click the
up or down arrow to move sequentially through occurrences of the term.

At the end of a local or remote interactive verification, the Verification
Statistics tab displays statistics, for example, code coverage and check
distribution.

Stop Verification
To stop a remote verification:

1 Open the Runs view of Polyspace Metrics.

2 Right-click the verification.

3 From the context menu, select Stop and Remove Job.

For more information, see “Manage Previous Verifications With Polyspace
Metrics”.

To stop a local verification:

1 On the Project Manager toolbar, click

.

A warning dialog box opens.

4-11

4 Run a Verification

2 Click Yes. The verification stops, and the results are incomplete. If you
start another verification, the verification starts from the beginning.

4-12

5

Review Verification Results

5 Review Verification Results

Review Verification Results

In this section...

“Tutorial Overview” on page 5-2

“Before You Start” on page 5-2

“Open Remote Verification Results” on page 5-3

“Open Local Verification Results” on page 5-4

“Explore Results Manager perspective” on page 5-5

“Review Results” on page 5-9

“Automatically Test Unproven Code” on page 5-21

“Generate Reports of Verification Results” on page 5-22

Tutorial Overview
In the previous tutorial, “Run Verification” on page 4-2, you completed a
verification of example.c. In this tutorial, you explore the verification results.

Polyspace Code Prover provides a Results Manager perspective, which you
use to review results. In this tutorial, you learn:

1 How to use the Results Manager perspective, including how to:

• Open the Results Manager perspective and view verification results.

• Review results.

• Generate reports.

2 How to interpret the color coding that the software uses to indicate the
severity of an error.

3 How to find the location of an error in the source code.

Before You Start
Before starting this tutorial, complete the tutorial “Run Verification” on page
4-2.

5-2

Review Verification Results

Open Remote Verification Results
Use Polyspace Metrics to open results from a remote verification.

1 In the address bar of your Web browser, enter the following URL:

protocol://ServerName:PortNumber

• protocol is either http (default) or https.

• ServerName is the name or IP address of your Polyspace Metrics server.

• PortNumber is the Web server port number (default 8080).

For reference, save the Polyspace Metrics Web page as a bookmark.

2 Click the Project or Version cell of your verification.

The software downloads and opens the results in the Results Manager
perspective of Polyspace Code Prover. See “Explore Results Manager
perspective” on page 5-5.

Note If the verification is unit-by-unit, then clicking the Project or Version
cell opens the Select the results set to review dialog box. From theResults Set
drop-down list, select the results set that you want to review. Alternatively,
select the Download all results sets check box. Then click OK.

5-3

5 Review Verification Results

Open Local Verification Results
If your project is open in the Project Manager perspective, from the Project
Browser, double-click the results file example_project.pscp.

The software opens the results in the Results Manager perspective. See
“Explore Results Manager perspective” on page 5-5.

Alternatively:

1 On the Polyspace Code Prover toolbar, select File > Open Result.

2 In the Open Results dialog box, navigate to the results folder:

polyspace_project\Module_1\Result_example_project_1

3 Select the file example_project.pscp.

4 Click Open.

5-4

Review Verification Results

Explore Results Manager perspective

• “Overview” on page 5-5

• “Results Summary” on page 5-6

Overview
The Results Manager perspective looks like the following figure.

The Results Manager perspective has six sections below the toolbar. Each
section provides a different view of the results. The following table describes
these views.

5-5

5 Review Verification Results

This pane or view ... Displays ...

Results Summary List of checks (diagnostics) for each
file and function in the project

Source Source code for a selected check in
the Results Summary view

Check Details Details about the selected check

Check Review Review information about selected
check

Variable Access Information about global variables
declared in the source code

Call Hierarchy Tree structure of function calls

You can resize or hide any of these sections. You learn more about the Results
Manager perspective later in this tutorial.

Results Summary
The Results Summary pane lists all checks along with their attributes.
To organize your check review, from the drop-down list on this pane, select
one of the following options:

• List of Checks: Lists all checks without any grouping. The checks are
sorted in the following order:

1 Red: Indicates code that is proven to contain an error. The check
indicates that the code will fail every time it is executed.

2 Gray — Indicates unreachable code.

3 Orange— Indicates unproven code that might contain an error.

4 Purple. — Indicates coding rule violation.

5 Green— Indicates code that is proven to not contain an error.

• Checks by Family: Lists all checks grouped by color. Within each color,
the checks are grouped by category. For more information on the checks
covered by a category, see the check reference pages.

5-6

Review Verification Results

• Checks by Class: Lists all checks grouped by class. Within each class, the
checks are grouped by method. The first group, Global Scope, lists all
checks not occurring in a class definition.

This option is available for C++ code only.

• Checks by File/Function: Lists all checks grouped by file. Within each
file, the checks are grouped by function.

For each check, the Results Summary pane contains the check attributes,
listed in columns:

Attribute Description

Family Group to which the check
belongs. For instance, if you
choose the grouping Checks by
File/Function, this column
contains the name of the file and
function containing the check.

Check Description of the error

Information For run-time errors, this attribute
indicates whether the check is
related to path or bounded input
values. For coding rule violations,
this attribute indicates whether the
rule is Required.

File File containing the instruction where
the check occurs

Function Function containing the instruction
where the check occurs. If
the function is a method of a
class, it appears in the format
class_name::function_name.

Line Line number of the instruction
where the check occurs.

5-7

5 Review Verification Results

Attribute Description

Classification Level of severity you have assigned
to the check. The possible levels are:
• Unset

• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to
the check. The possible statuses are:
• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Other

• Restart with different
options

Justified Check boxes showing whether you
have justified the checks

Comments Comments you have entered about
the check

To show or hide any of the columns, right-click anywhere on the column titles.
From the context menu, select or clear the title of the column that you want
to show or hide.

Using this pane, you can:

• Navigate through all the checks. For more information, see “Review and
Comment Checks”.

5-8

Review Verification Results

• Organize your check review using filters on the appropriate columns. For
more information, see “Organize Check Review Using Filters and Groups”.

Review Results

• “View Examples of Checks” on page 5-9

• “Review Checks” on page 5-13

• “Review Checks Using Predefined Methodologies” on page 5-17

• “Organize Check Review Using Filters and Groups” on page 5-18

View Examples of Checks
In this part of the tutorial, you learn about categories of errors by reviewing
the following examples in example.c:

• “Example: Unreachable Code” on page 5-10

• “Example: Arithmetic Error” on page 5-11

• “Example: A Function with No Errors” on page 5-12

• “Example: Division by Zero” on page 5-12

5-9

5 Review Verification Results

Example: Unreachable Code. Unreachable code is code that never
executes. The code verification software displays unreachable code in gray. In
the following example, you look at an example of unreachable code.

1 On the Results Summary pane, click Unreachable_Code().

The source code view displays the source code for this function.

2 Examine the source code.

At line 193, the condition x < 0 is always false. The curly bracket { is gray
because the branch is never executed.

5-10

Review Verification Results

Example: Arithmetic Error. In the following example, the code verification
software detects a memory corruption error:

1 On the Results Summary pane, select the red Square_Root() function.

The source code view displays the source code for this function.

2 Examine the source code.

Because beta is always less than 0.75, the argument to the sqrt() function
at line 178 is always negative.

5-11

5 Review Verification Results

Example: A Function with No Errors. In the following example, the code
verification software verifies code with a large number of iterations, and
determines that the loop terminates and a variable does not overflow:

1 On the Results Summary pane, click the green Non_Infinite_Loop()
function.

The source code view displays the source code for this function.

2 Examine the source code. The variable x never overflows because the while
loop at line 69 terminates before x can overflow.

Example: Division by Zero. In the following example, the code verification
software detects division by zero:

1 On the Results Summary pane, select Recursion().

The source code view displays the source code for this function.

5-12

Review Verification Results

2 Examine the Recursion() function.

When Recursion() is called with depth less than zero, the code at line 132
results in division by zero. The orange color indicates that this operation is
a potential error (depending on the value of depth).

Review Checks
This example shows how to review and comment checks using the Results
Manager perspective. When reviewing checks, you can assign a status to
checks, and enter comments to describe the results of your review. These

5-13

5 Review Verification Results

actions help you to track the progress of your review and avoid reviewing
the same check twice.

Review and Comment Individual Check

1 On the Results Summary pane, select the check that you want to review.

The Check Details pane displays information about the current check.

The Check Review tab displays fields where you can enter review
information.

2 Select a Classification to describe the severity of the issue:

5-14

Review Verification Results

• Unset

• High

• Medium

• Low

• Not a defect

3 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Other

• Restart with different options

• Undecided

4 To justify the check, select one of the Status options, Justify with
annotations or No action planned.

On the Review Statistics pane, the software updates the ratios of errors
justified to total errors.

5-15

5 Review Verification Results

5 In the Comment field, enter remarks, for example, defect or justification
information.

Note You can also enter the review information through the Classification,
Status, and Comment fields on the Results Summary pane.

Save Review Comments

After you have reviewed your results, save your comments with the
verification results. Saving your comments makes them available the next

5-16

Review Verification Results

time that you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments, select File > Save. Your comments are saved
with the verification results.

Review Checks Using Predefined Methodologies
This example shows how to incrementally review checks using predefined
review methodologies provided by Polyspace Code Prover.

1 In the Results manager perspective, from the drop-down list above the
Results Summary pane, select the methodology, First checks to review.

The Results Summary pane displays all red and gray checks, as well as
orange checks most likely to be run-time errors. Investigate and fix the
errors, set the status of the checks, and justify them.

2 Once all the checks have been justified, select the methodology,
Methodology for C/C++ > Light.

In the Results Summary pane, you can view all red, gray, and purple
checks, as well as a subset of orange checks. To filter the unjustified
checks, from the drop-down list beside the Justified column header, clear
all boxes except False and select OK.

Investigate and fix the errors, set the status of the checks, and justify them.

5-17

5 Review Verification Results

3 Once all the checks have been justified, to see a larger subset of orange
checks, select Methodology for C/C++ > Moderate. The number of
orange checks in the Results Summary pane increases.

To refresh the list to show unjustified checks only, reopen the drop-down
list beside the Justified column header and select OK.

Investigate and fix the errors, set the status of the checks and justify them.

4 To exhaustively review all of the checks, select All checks. In addition to
all orange checks, this methodology also reveals all the green checks in the
Results Summary pane.

Organize Check Review Using Filters and Groups
To review all checks resulting from Illegally dereferenced pointer:

1 Open the results file, with extension, .pscp.

2 On the Results Summary pane, from the drop-down list, select Checks
by Family.

The checks are grouped by type of check.

5-18

Review Verification Results

3 Under the category 1 Red Check, expand the subcategory Static memory.

You see the subcategory Illegally dereferenced pointer.

5-19

5 Review Verification Results

Expand Illegally dereferenced pointer to view all red checks resulting
from this error.

To see further information about a check, select it. The information
appears on the Check Details pane.

4 To view all orange checks resulting from this error, repeat step 3 for the
subcategory Static memory under the category 3 Orange Check.

5 To view only the checks resulting from the error, Illegally dereferenced
pointer, on the Results Summary pane, from the drop-down list, select
List of Checks.

6 Place your cursor on the Check column head.

5-20

Review Verification Results

7 Click the filter icon.

A context menu lists all the filter options available.

8 Clear the All check box.

9 Scroll down to the Illegally dereferenced pointer check box and select
it. Click OK.

The Results Summary pane displays only the checks resulting from the
Illegally dereferenced pointer error.

Automatically Test Unproven Code
Reviewing orange code to find true errors is a time-consuming task. You can
use the Automatic Orange Tester to automatically create and run test cases
to identify errors in the orange code. The workflow for using the Automatic
Orange Tester is:

1 Set an option to indicate that you want the software to run the Automatic
Orange Tester at the end of the verification.

2 Run the verification. The software uses results from the Automatic Orange
Tester to identify potential run-time errors.

3 If you want to perform further dynamic tests on the code, run the Automatic
Orange Tester manually.

4 Review the results.

To learn how to use the Automatic Orange Tester, see “Test Orange Checks
Automatically”.

5-21

5 Review Verification Results

Generate Reports of Verification Results

• “Polyspace Report Generator Overview” on page 5-22

• “Generate Report for example.c” on page 5-23

Polyspace Report Generator Overview
The Polyspace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

Report Templates. The Polyspace Report Generator provides the following
report templates:

• Coding Rules Report – Provides information about compliance with
MISRA C®, MISRA® AC AGC, MISRA C++, JSF C++, and custom coding
rules, as well as Polyspace configuration settings for the verification.

• Developer Report – Provides information useful to developers, including
summary results, coding rule violations, detailed lists of red, orange, and
gray checks, and Polyspace configuration settings for the verification.
Detailed results are sorted by type of check (Proven Run-Time Violations,
Proven Unreachable Code Branches, Unreachable Functions, and
Unproven Run-Time Checks).

• Developer Review Report – Provides the same information as the
Developer Report, but reviewed results are sorted by review classification
(High, Medium, Low, Not a defect) and status, and untagged checks are
sorted by file location.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

• Software Quality Objectives Report – Provides comprehensive
information on software quality objectives (SQO), including code metrics,
code analysis (coding-rules checker results), code verification (run-time
checks), and the configuration settings for the verification. The code metrics
section provides the same information displayed by Polyspace Metrics.

5-22

Review Verification Results

Generate Report for example.c
You can generate reports for any verification results using the Polyspace
Report Generator.

To generate a verification report:

1 If your verification results are not already open, open them.

2 Select Run > Run Report > Run Report....

The Run Report dialog box opens.

3 In the Select Report Template section, select Developer.

4 In the Output folder section, select the folder
polyspace_project\Module_1\Result_1\Polyspace-Doc.

5-23

5 Review Verification Results

5 Select PDF Output format.

6 Click Run Report.

The software creates the specified report. When report generation is
complete, the report opens.

5-24

6

Check Compliance with
Coding Rules

6 Check Compliance with Coding Rules

Check Compliance with Coding Rules

In this section...

“Tutorial Overview” on page 6-2

“Before You Start” on page 6-3

“Create New Module for Coding Rules Checking” on page 6-3

“Set MISRA C Checking Option” on page 6-7

“Select Coding Rules to Check” on page 6-8

“Exclude Files from MISRA C Checking” on page 6-11

“Run a Verification with Coding Rules Checking” on page 6-12

“Examine MISRA C Violations” on page 6-12

Tutorial Overview
Polyspace software allows you to analyze code to demonstrate compliance with
established C or C++ coding standards (MISRA C 2004, MISRA C++:2008,
or JSF++:2005).1

Applying coding rules can both reduce the number of orange checks in your
verification results and improve the quality of your code. Coding rules are the
most efficient way to reduce orange checks.

To check compliance with coding rules, you set an option in your project and
then run a verification. Polyspace software finds the violations during the
compile phase of a verification. When you have addressed all coding rule
violations, you run the verification again.

For more information on the coding rules checker, see “Overview of Polyspace
Code Analysis”.

In this tutorial, you learn how to:

1 Create a module within your project.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

6-2

Check Compliance with Coding Rules

2 Set an option for checking MISRA C compliance.

3 Select MISRA C rules to check.

4 Run a verification with MISRA C checking.

5 View coding rules violations using the Coding Rules perspective.

Before You Start
Before you start this tutorial, you must complete “Set Up Polyspace Project”
on page 2-2. For this tutorial, you use the folders from that tutorial.

Create New Module for Coding Rules Checking

• “Open Your Example Project” on page 6-3

• “Create New Module for MISRA C Checking” on page 6-4

• “Configure Text Editor” on page 6-7

Open Your Example Project
For this tutorial, you modify example_project.psprj to include MISRA
C checking.

To open example_project.psprj:

1 Select File > Open Project.

2 In the Open Project dialog box, navigate to polyspace_project.

3 Select example_project.psprj.

4 Click Open.

6-3

6 Check Compliance with Coding Rules

Create New Module for MISRA C Checking
A Polyspace Code Prover project can contain multiple modules. Each of
these modules can verify a specific set of source files using a specific set
of analysis options. In this section, you create a third module to check
coding rules compliance for the example.c file and a new configuration,
example_project_1.

1 From the Project Manager perspective, in the Project Browser, select
example_project [C].

2 On the Project Browser toolbar, click the Create new module icon .

You see a new module , Module_3.

6-4

Check Compliance with Coding Rules

3 Under example_project [C] > Source, right-click example.c. From the
context menu, select Copy Source File to > Module_3.

4 UnderModule_3, right-click the Configuration folder. From the context
menu, select Create New Configuration.

5 Right-click the example_project_1 configuration. From the context menu,
select Set as Active Configuration.

6-5

6 Check Compliance with Coding Rules

6-6

Check Compliance with Coding Rules

Configure Text Editor
Before you check MISRA rules, configure your text editor in the Polyspace
Preferences dialog box, which allows you to view source files directly from the
Results Manager perspective.

To configure your text editor:

1 From the Polyspace Code Prover toolbar, select Options > Preferences.

2 In the Polyspace Preferences dialog box, click the Editors tab.

3 In the Text Editor field, specify an editor for viewing source files from the
Project Manager logs. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

4 From the Arguments drop-down list, select your text editor to
automatically specify the command-line arguments for that editor.

• Emacs

• Notepad++ — Windows only

• UltraEdit

• VisualStudio

• WordPad — Windows only

• gVim

If you are using another text editor, select Custom from the drop-down list,
and specify the command-line arguments for the text editor.

5 Click OK.

Set MISRA C Checking Option
You set up MISRA C checking by setting an analysis option and then selecting
the rules to check. To set the MISRA C checking option:

1 In the Project Browser, select the example_project_1 configuration.

2 Select the Configuration > Coding Rules pane.

6-7

6 Check Compliance with Coding Rules

3 Select the Check MISRA C rules check box.

4 Use the corresponding drop-down list to specify the rules. For example,
select required-rules.

5 You can also specify the following options:

• Files and folders to ignore — Files, if any, to exclude from the
checking.

• Effective boolean types — Data types that you want Polyspace to
consider as Boolean.

• Allowed pragmas— Undocumented pragma directives for which rule
MISRA C 3.4 must not be applied.

Select Coding Rules to Check
You must have a rules file to run a verification with MISRA C checking. You
can use an existing file or create a new one. You create a new rules file for
this tutorial by:

• “Creating a MISRA C Rules File” on page 6-8

• “Set All Rules to Off” on page 6-10

• “Selecting Rules to Check” on page 6-10

Creating a MISRA C Rules File
To open a new rules file:

1 In the Project Manager perspective, select the Configuration > Coding
Rules pane.

2 Select the Check MISRA C rules check box.

3 From the corresponding drop-down list, select custom.

4 Click the Edit button. The New File dialog box opens, displaying a table
of rules.

6-8

Check Compliance with Coding Rules

5 For each rule, specify one of the following states.

6-9

6 Check Compliance with Coding Rules

State Causes the verification to ...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
is violated.

Off Skip checking of this rule.

The default state for most rules is Warning. The state for rules that have
not yet been implemented is Off. Some rules have a fixed state of Error,
which you cannot change.

6 Click OK.

7 Use the Save as dialog box to save your rules file.

Set All Rules to Off
In this tutorial, you select only a few rules. Therefore, first set the state of all
rules to Off. Later, you can select the specific rules that you want to check.

To set the state of all rules to Off:

1 In the New File dialog box, from the Set the following state to all
MISRA C rules drop-down list, select Off.

2 Click Apply.

Selecting Rules to Check
To select the rules to check for this tutorial:

1 Expand the set of rules named 16 Functions.

2 Select the Error column for 16.3.

3 Expand the set of rules named 17 Pointers and arrays.

4 Select the Warning column for 17.4.

6-10

Check Compliance with Coding Rules

The completed rules table looks like the following figure.

5 Click OK to save the rules and close the window.

6 In the Save as dialog box, in the File, field, enter misrac.txt

7 Click OK to save the file and close the dialog box.

Exclude Files from MISRA C Checking
You can exclude files from MISRA C checking. For example, you might want
to exclude some include files. To exclude math.h from the MISRA C checking
of the project example_project.psprj:

6-11

6 Check Compliance with Coding Rules

1 In the Project Manager perspective, select the Configuration > Coding
Rules pane.

2 Select the Files and folders to ignore check box.

3 From the corresponding drop-down list, select custom.

4 In the File/Folder view, click .

5 Use the Open File dialog box to navigate to the folder
polyspace_project\includes.

6 Select the file math.h.

7 Click Open.

You see the file math.h in the File/Folder view.

Run a Verification with Coding Rules Checking
When you run a verification with the MISRA C option selected, the software
checks most of the MISRA C rules during the compile phase.2

To start the verification:

1 In the Project Browser, select your project configuration, for example,
example_project_1.

2 On the Project Manager toolbar, click the Run button .

The verification fails because of MISRA C violations. You see messages in
the Full Log, and the Output Summary indicates that the verification
has detected MISRA errors. If a rule with state Error is violated, the
verification stops.

Examine MISRA C Violations
To examine the MISRA C violations:

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

6-12

Check Compliance with Coding Rules

1 In the Project Browser Result folder, double-click MISRA-C-report.xml,
which opens the Results Manager perspective.

2 On the Results Summary pane, right-click on any column header. Select

Type. Place your cursor on the Type column and select the filter icon .
Clear the All check box and select the 4 MISRA-C Warning check box.

Only coding-rule violations remain on the Results Summary pane.

3 Click any violation.

In the Check Details pane, you see a description of the violated rule and
the name of the file in which the violation was found. In the Source pane,
you see the source code that contains the violation.

The code uses a form of pointer arithmetic that is not allowed, a violation
of rule 17.4.

4 In the Source pane, right-click the highlighted code containing the
violation of rule 17.4. From the context menu, select Open Source File.
Before you can open source files, you must configure a text editor. See
“Configure Text Editor” on page 6-7.

The example.c file opens in your text editor.

6-13

6 Check Compliance with Coding Rules

6-14

Check Compliance with Coding Rules

5 Fix the MISRA violation and run the verification again. The results are the
same as those from the tutorial in “Run Verification” on page 4-2.

6-15

6 Check Compliance with Coding Rules

6-16

7

Verifying Code Generated
from Simulink Models

• “Verification of Code Generated from Simulink Models” on page 7-2

• “Verify Code from a Simple Simulink Model” on page 7-3

7 Verifying Code Generated from Simulink® Models

Verification of Code Generated from Simulink Models
With Embedded Coder® or dSPACE® TargetLink® software, you can generate
code from Simulink® models. From Simulink, you can use Polyspace Code
Prover to verify the generated code. The software detects run-time errors in
the generated code and helps you to locate and fix model faults.

Use the following approach:

1 Configure your Simulink model and generate code. See “Model
Configuration for Code Generation and Analysis”.

2 Configure Polyspace verification options. See “Polyspace Configuration
for Generated Code”

Note After generating code, you can run a verification without manual
configuration. By default, Polyspace Code Prover automatically creates a
project and extracts required information from your model. However, you
can also customize your verification. See “Configure Polyspace Options
from Simulink”.

3 Run Polyspace verification. See:

• “Run Analysis for Embedded Coder”

• “Run Analysis for TargetLink”

4 View results, analyze errors, locate and fix model faults. See “View Results
in Polyspace Code Prover”.

The software allows direct navigation from a run-time error in the
generated code to the corresponding Simulink block or Stateflow® chart in
the Simulink model. See “Identify Errors in Simulink Models”.

7-2

Verify Code from a Simple Simulink® Model

Verify Code from a Simple Simulink Model

In this section...

“Create Simulink Model and Generate Code” on page 7-3

“Run Polyspace Verification” on page 7-6

“View Results in Polyspace® Code Prover™” on page 7-6

“Trace Error to Simulink Model” on page 7-8

“Specify Signal Ranges” on page 7-9

“Verify Updated Model” on page 7-11

Create Simulink Model and Generate Code
To create a simple Simulink model and generate code:

1 Open MATLAB. Then start Simulink software.

2 Construct the following model.

3 Select File > Save. Then name the model my_first_code.

4 Select Tools > Model Explorer. The Model Explorer opens.

5 From theModel Hierarchy tree, expand the node my_first_code.

7-3

7 Verifying Code Generated from Simulink® Models

6 Select Configuration > Code Generation, which displays Code
Generation configuration parameters.

7 Select the General tab, and then set the System target file to ert.tlc
(Embedded Coder).

8 Select the Report tab.

9 Select Create code-generation report, and then select Code-to-model
navigation.

10 Select the Templates tab.

11 In the Custom templates section, clear the check box Generate an
example main program.

12 Select the Interface tab.

7-4

Verify Code from a Simple Simulink® Model

13 In the Code interface section, select the Suppress error status in
real-time model data structure check box.

14 Click Apply in the lower-right corner of the window.

15 Select Configuration > Solver, which displays Solver configuration
parameters.

16 In the Solver options section, set the solver Type to Fixed-step. Then,
set the Solver to discrete (no continuous states).

17 Click Apply.

18 Select Configuration > Optimization, which displays Optimization
configuration parameters. Then:

• On the General tab, in the Data initialization section, select the
Remove root level I/O zero initialization check box.

• On the General tab, clear the Use memset to initialize floats and
doubles to 0.0 check box

• On the Signals and Parameters tab, in the Simulation and code
generation section, select the Inline parameters check box.

19 Click Apply.

20 To generate code, from the Simulink model window, select Code > C/C++
Code > Build Model.

21 Save your Simulink model.

7-5

7 Verifying Code Generated from Simulink® Models

Run Polyspace Verification
To start the Polyspace verification:

1 From the Simulink model window, select Code > Polyspace > Verify
Code Generated for > Model.

The verification starts, and you see messages in the MATLAB Command
Window.

Starting Polyspace verification for Embedded Coder

Creating results folder results_my_first_model for system my_first_model

Parameters used for code verification:

System : my_first_model

Results Folder : C:\results_my_first_model

Additional Files : 0

Verifier settings : PrjConfig

DRS input mode : DesignMinMax

DRS parameter mode : None

DRS output mode : None

Model Reference Depth : Current model only

Model by Model : 0

...

2 Follow the progress of the verification in the MATLAB Command window.

Note Verification of this model takes about a minute. A 3,000 block model
will take approximately one hour to verify, or about 15 minutes for each 2,000
lines of generated code.

View Results in Polyspace Code Prover
When the verification is complete, you can view the results using the Results
Manager perspective of the Polyspace Code Prover.

1 From the Simulink model window, select Code > Polyspace > Open
Results > For Generated Code.

After a few seconds, the Results Manager perspective opens.

7-6

Verify Code from a Simple Simulink® Model

2 In the Results Summary view, select the drop-down menu and change
the results organization to List of Checks.

3 Select the orange Overflow check.

The Check Details pane shows information about the orange check, and
the Source pane shows the source code containing the orange check.

This orange check shows a potential overflow issue when multiplying the
signals from the inports In1 and In2. Polyspace software assumes that

7-7

7 Verifying Code Generated from Simulink® Models

the signal values are full range, and the multiplication of the two signals
may result in an overflow.

Trace Error to Simulink Model
To fix this overflow issue, you must return to the Simulink model.

To trace the error to your model:

1 Click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane. The Simulink model opens, highlighting the
block with the error.

2 Examine the model. The highlighted block multiplies two full-range
signals, which could result in an overflow.

The verification has identified a potential bug. This could be a flaw in:

• Design — If the model should be robust for the full signal range, then
the issue is a design flaw. In this case, you must change the model to
accommodate the full signal range. For example, you could saturate the
output of the previous block, or bound the signal with a Switch block.

• Specifications — If the model is supposed to work for specific input
ranges, you can provide these ranges using block parameters or the base
workspace. The next verification will read these ranges from the model,
and the check will be green.

7-8

Verify Code from a Simple Simulink® Model

Specify Signal Ranges
If you constrain the signals in your Simulink model to specified ranges,
Polyspace software automatically applies these constraints during verification
of the generated code. The Overflow check will then be green in the
verification results.

To specify signal ranges using source block parameters:

1 Double-click the In1 source block in your model. The Source Block
Parameters dialog box opens.

2 Select the Signal Attributes tab.

3 Set the Minimum value for the signal to -15.

4 Set the Maximum value for the signal to 15.

7-9

7 Verifying Code Generated from Simulink® Models

5 Click OK.

6 Repeat steps 1–6 for the In2 block.

7 Save your model as my_first_code_bounded.

7-10

Verify Code from a Simple Simulink® Model

Verify Updated Model
After changing the model, you must regenerate code and run verification
again.

To regenerate code and rerun the verification:

1 From the Simulink model, select Code > C/C++ Code > Build Model.

The software generates code for the updated model.

2 Select Code > Polyspace > Verify Code Generated for > Model.

The software verifies the generated code.

3 Select Code > Polyspace > Open Results, which opens Polyspace Code
Prover.

4 In the Results Manager perspective, select the Results Explorer tab.

The Overflow check is now green. Polyspace verification shows that no
run-time errors are present in the model.

7-11

7 Verifying Code Generated from Simulink® Models

7-12

8

Code Verification in
IBM Rational Rhapsody
Environment

8 Code Verification in IBM® Rational® Rhapsody® Environment

Verify Code in IBM Rational Rhapsody Environment

In this section...

“Code Verification Approach” on page 8-2

“Adding Polyspace Profile to Model” on page 8-3

“Accessing Polyspace Features” on page 8-3

“Configuring Verification Options” on page 8-6

“Running a Verification” on page 8-7

“Monitoring a Verification” on page 8-8

“Viewing Polyspace Results” on page 8-8

“Locating Faulty Code in Rhapsody Model” on page 8-9

“Template Configuration Files” on page 8-9

Code Verification Approach
In a collaborative Model-Driven Development (MDD) environment, software
run-time errors can be produced by either design issues in the model or faulty
handwritten code. You may be able to detect the flaws using code reviews
and intensive testing. However, these techniques are time-consuming and
expensive.

With Polyspace Code Prover, you can verify C, C++ and Ada code that you
generate from your IBM® Rational® Rhapsody® model. As a result, you can
detect run-time errors and automatically identify model flaws quickly and
early during the design process.

For information about installing and using IBM Rational Rhapsody, go to
www-01.ibm.com/software/awdtools/rhapsody/.

The approach for using Polyspace Code Prover within the IBM Rational
Rhapsody MDD environment is:

• Integrate the Polyspace add-in with your Rhapsody project. See “Adding
Polyspace Profile to Model” on page 8-3.

8-2

http://www-01.ibm.com/software/awdtools/rhapsody/

Verify Code in IBM® Rational® Rhapsody® Environment

• If required, specify Polyspace configuration options in the Polyspace
verification environment. See “Configuring Verification Options” on page
8-6.

• Specify the include path to your operating system (environment) header
files and run verification. See “Running a Verification” on page 8-7 and
“Monitoring a Verification” on page 8-8.

• View results, analyze errors, and locate faulty code within model. See
“Viewing Polyspace Results” on page 8-8 and “Locating Faulty Code in
Rhapsody Model” on page 8-9.

Adding Polyspace Profile to Model
Before you try to access Polyspace features, you must add the Polyspace
profile to your model :

1 In the Rhapsody editor, select File > Add Profile to Model. The Add
Profile to Model dialog box opens.

2 Navigate to the folder
MATLAB_Install\polyspace\plugin\rhapsody\profiles\Polyspace.

3 Select the file Polyspace.sbs. Then click Open.

Now, if you right-click a package or file, you see the Polyspace item in the
context menu. Selecting Polyspace opens the Polyspace Verification dialog
box.

Accessing Polyspace Features
To access Polyspace features in the Rhapsody editor:

1 Open the model that you want to verify. For
example, psdemos_uml_link_airbag.rpy in
MATLAB_Install/polyspace/plugin/rhapsody/psdemos.

8-3

8 Code Verification in IBM® Rational® Rhapsody® Environment

2 In the Entire Model View, expand the Packages node.

3 Right-click a package, for example, AirBagFiles.

4 From the context menu, select Polyspace.

The Polyspace Verification dialog box opens.

8-4

Verify Code in IBM® Rational® Rhapsody® Environment

Through the Polyspace Verification dialog box, you can:

• Specify verification options. See “Configuring Verification Options” on
page 8-6.

• Start a verification. See “Running a Verification” on page 8-7.

• Stop a local verification. See “Running a Verification” on page 8-7.

• View verification results. See “Viewing Polyspace Results” on page 8-8.

• Open help.

8-5

8 Code Verification in IBM® Rational® Rhapsody® Environment

• Open the Polyspace Queue Manager. See “Monitoring a Verification” on
page 8-8.

Configuring Verification Options
To specify options for your verification:

1 In the Entire Model View, right-click a package or class, for example,
AirbagControl.

2 From the context menu, select Polyspace.

3 In the Polyspace Verification dialog box, click Configure. The
Configuration pane of the Polyspace verification environment opens.

4 Select options for your verification. In particular, you must specify the
following:

• Target & Compiler > Target operating system (-OS-target)

• Target & Compiler > Dialect (-dialect)

• Target & Compiler > Environment Settings > Include (-include)
— Path to your operating system (environment) header files.

• Distributed Computing > Batch (-include) — For local verification,
clear the check box. For remote verification, select the check box.

8-6

Verify Code in IBM® Rational® Rhapsody® Environment

5 To save your options, on the toolbar, click .

For information on how to choose your options, see:

• “Analysis Options for C Code”

• “Analysis Options for C++ Code”

Running a Verification
Before starting a verification, make sure that the generated code for the
model is up to date.

To start a verification:

1 In the Rhapsody editor, select Tools > Polyspace. The Polyspace
Verification dialog box opens.

2 In the Results folder field, specify a location for your verification results.

3 Select the Verification mode. Click Class or File. If you click Class,
from the Class to verify drop-down list, select a specific class. In addition,
underVerify with (highlight classes), you can select other classes from
the displayed list.

4 Click Run. In the Log view of the Rhapsody editor, you see verification
messages.

To stop a local verification, in the Polyspace Verification dialog box, click Stop.

To stop a remote verification, use Polyspace Metrics or the Queue Manager.
See:

• “Manage Previous Verifications With Polyspace Metrics”

• “Manage Remote Verifications”

.

8-7

8 Code Verification in IBM® Rational® Rhapsody® Environment

Monitoring a Verification
If your verification is local, you can observe progress in the Log view of the
Rhapsody editor.

If your verification is remote, use Polyspace Metrics or the Queue Manager.

For more information, see:

• “Manage Previous Verifications With Polyspace Metrics”

• “Manage Remote Verifications”

Viewing Polyspace Results
To view results from the last local verification:

1 In the Rhapsody editor, select Tools > Polyspace.

2 In the Polyspace Verification dialog box, click Open Results.

The software displays results in the Results Manager perspective.

To view results from remote verifications, use Polyspace Metrics or the Queue
Manager.

For more information, see “Run-Time Error Review”.

Declarations for C Functions Without Arguments
By default, Rhapsody generates declarations for functions without any
parameters, using the form:

void my_function()

rather than:

void my_function(void)

This can result in the following Polyspace compilation error:

Fatal error: function 'my_function' has unknown prototype.

8-8

Verify Code in IBM® Rational® Rhapsody® Environment

To avoid this problem, in Rhapsody, at the project level, set the property
C_CG::Configuration::EmptyArgumentListName to void.

Locating Faulty Code in Rhapsody Model
To identify the faulty code within your Rhapsody model using Polyspace
verification results:

1 In the Results Manager perspective, navigate to an error, for example.

2 In the Source pane, right-click the error. From the context menu, select
Back To Model.

Tip For the Back To Model command to work, you must have your
Rhapsody model open.

The Back To Model command works best when the Polyspace check is
enclosed by the tags //#[and]#//.

The software locates the faulty code within your Rhapsody model.
Depending on the Rhapsody configuration, the faulty code appears either
in a dialog box or in the code view.

The 64-bit version of the Polyspace product supports the Back To Model
command only for version 8.0 of the IBM Rational Rhapsody product. For
other versions, use the 32-bit Polyspace version.

To install the 32-bit Polyspace version, from a DOS command window,
run the following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

Template Configuration Files

• “Using Template Configuration Files” on page 8-10

• “Default Configuration Options” on page 8-10

8-9

8 Code Verification in IBM® Rational® Rhapsody® Environment

Using Template Configuration Files
The first time you perform a verification, the software
copies a template, Polyspace configuration file, from
Polyspace_Install/polyspace/plugin/rhapsody/etc/template_language.psprj
to the project folder. The software also renames the copy
model_language.psprj, where:

• model is the name of your model.

• language is the name of the language that the model targets, that is, C
or C++.

You can update the template .psprj file by one of the following means:

• Editing it through the Polyspace verification environment

• Double-clicking the file in a Windows Explorer window

• Replacing the template file with a copy of the .psprj file from a Rhapsody
model folder

You can then share a configuration among project members and use the
configuration with other projects.

Default Configuration Options
The template_language.psprj XML files specify the default option values
for code verification.

The file template_C.psprj is:

<?xml version="1.0" encoding="UTF-8"?>

<polyspace_project name="template_psprj" language="C" author="polyspace"

version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common

/Rhapsody/PolyspaceUMLLink/etc/template_C.psprj">

<source>

</source>

<include>

</include>

<module name="Verification_1" isactive="true">

<source>

</source>

8-10

Verify Code in IBM® Rational® Rhapsody® Environment

<optionset name="template_psprj" isactive="true">

<option flagname="-OS-target">no-predefined-OS</option>

<option flagname="-allow-undef-variables">true</option>

<option flagname="-respect-types-in-fields">true</option>

<option flagname="-respect-types-in-globals">true</option>

</optionset>

</module>

</polyspace_project>

The file template_C++.psprj is:

<?xml version="1.0" encoding="UTF-8"?>

<polyspace_project name="template_psprj" language="C++" author="polyspace"

version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common

/Rhapsody/PolyspaceUMLLink/etc/template_C++.psprj">

<source>

</source>

<include>

</include>

<module name="Verification_1" isactive="true">

<source>

</source>

<optionset name="template_psprj" isactive="true">

<option flagname="-D">[OM_NO_FRAMEWORK_MEMORY_MANAGER]</option>

<option flagname="-OS-target">no-predefined-OS</option>

<option flagname="-allow-undef-variables">true</option>

<option flagname="-dialect">gnu</option>

<option flagname="-respect-types-in-fields">true</option>

<option flagname="-respect-types-in-globals">true</option>

<option flagname="-target">i386</option>

</optionset>

</module>

</polyspace_project>

8-11

8 Code Verification in IBM® Rational® Rhapsody® Environment

8-12

Index

IndexA
analysis options 2-10
AOT. See Automatic Orange Tester
Automatic Orange Tester

overview 5-21

C
compliance

MISRA C 6-1

D
default folder

changing location 2-6
division by zero

example 5-12

M
manual mode

use 5-9
MISRA C compliance

checking 6-1
rules file 6-8
violations 6-12

P
project

creation 2-2 2-6
folders

includes 2-3
results 2-3
sources 2-3

opening 4-3
saving 2-10

R
reports

generation 5-22
results

report generation 5-22
reviewing 5-1

Results Manager perspective
overview 5-5

T
target environment 2-9

U
unreachable code

example 5-10

V
verification

results
report generation 5-22
reviewing 5-1

with MISRA C checking 6-12

Index-1

	toc
	Introduction to Polyspace Code Prover
	Polyspace Code Prover Product Description
	Key Features

	Set Up a Polyspace Project
	Set Up Polyspace Project
	Tutorial Overview
	What Is a Project?
	Prepare Project Folders
	Open Polyspace Code Prover
	Create a New Project to Verify the Example C File
	Open a New Project
	Specify Source Files and Include Folders
	Specify Target Environment
	Specify Analysis Options
	Save the Project

	Server Configuration for Remote Verification and Polyspace Metri
	Set Up Remote Verification and Polyspace Metrics
	Requirements for Remote Verification and Polyspace Metrics
	Configure Server for Remote Verification and Polyspace Metrics
	Metrics and Remote Server Settings
	Server Configuration
	Configure Web Server for HTTPS
	Change Web Server Port Number for Polyspace Metrics Server

	Run a Verification
	Run Verification
	Tutorial Overview
	Before You Start the Tutorial
	Prepare for Verification
	Open the Project
	Specify Source Files to Verify
	Check for Compilation Problems

	Start Remote Verification from Project Manager
	Start Local Verification from Project Manager
	Monitor Verification Progress
	Stop Verification

	Review Verification Results
	Review Verification Results
	Tutorial Overview
	Before You Start
	Open Remote Verification Results
	Open Local Verification Results
	Explore Results Manager perspective
	Overview
	Results Summary

	Review Results
	View Examples of Checks
	Review Checks
	Review and Comment Individual Check
	Save Review Comments
	Review Checks Using Predefined Methodologies
	Organize Check Review Using Filters and Groups

	Automatically Test Unproven Code
	Generate Reports of Verification Results
	Polyspace Report Generator Overview
	Generate Report for example.c

	Check Compliance with Coding Rules
	Check Compliance with Coding Rules
	Tutorial Overview
	Before You Start
	Create New Module for Coding Rules Checking
	Open Your Example Project
	Create New Module for MISRA C Checking
	Configure Text Editor

	Set MISRA C Checking Option
	Select Coding Rules to Check
	Creating a MISRA C Rules File
	Set All Rules to Off
	Selecting Rules to Check

	Exclude Files from MISRA C Checking
	Run a Verification with Coding Rules Checking
	Examine MISRA C Violations

	Verifying Code Generated from Simulink Models
	Verification of Code Generated from Simulink Models
	Verify Code from a Simple Simulink Model
	Create Simulink Model and Generate Code
	Run Polyspace Verification
	View Results in Polyspace Code Prover
	Trace Error to Simulink Model
	Specify Signal Ranges
	Verify Updated Model

	Code Verification in IBM Rational Rhapsody Environment
	Verify Code in IBM Rational Rhapsody Environment
	Code Verification Approach
	Adding Polyspace Profile to Model
	Accessing Polyspace Features
	Configuring Verification Options
	Running a Verification
	Monitoring a Verification
	Viewing Polyspace Results
	Declarations for C Functions Without Arguments

	Locating Faulty Code in Rhapsody Model
	Template Configuration Files
	Using Template Configuration Files
	Default Configuration Options

	Index

